Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators
نویسندگان
چکیده
Recent advances in applied mathematics and signal processing have shown that, in order to obtain sparse representations of multi-dimensional functions and signals, one has to use representation elements distributed not only at various scales and locations – as in classical wavelet theory – but also at various directions. In this paper, we show that we obtain a construction having exactly these properties by using the framework of affine systems. The representation elements that we obtain are generated by translations, dilations, and shear transformations of a single mother function, and are called shearlets. The shearlets provide optimally sparse representations for 2-D functions that are smooth away from discontinuities along curves. Another benefit of this approach is that, thanks to their mathematical structure, these systems provide a Multiresolution analysis similar to the one associated with classical wavelets, which is very useful for the development of fast algorithmic implementations.
منابع مشابه
Microlocal analysis of edge flatness through directional multiscale representations
Edges and surface boundaries are often the most relevant features in images and multidimensional data. It is well known that multiscale methods including wavelets and their more sophisticated multidimensional siblings offer a powerful tool for the analysis and detection of such sets. Among such methods, the continuous shearlet transform has been especially successful. This method combines aniso...
متن کاملSparse Multidimensional Representation using Shearlets
In this paper we describe a new class of multidimensional representation systems, called shearlets. They are obtained by applying the actions of dilation, shear transformation and translation to a fixed function, and exhibit the geometric and mathematical properties, e.g., directionality, elongated shapes, scales, oscillations, recently advocated by many authors for sparse image processing appl...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملOn the Representation of Functions with Gaussian Wave Packets
1. Introduction. The main purpose of this paper is to develop algorithms to obtain sparse representations of functions of several variables using Gaussian wave packets. Numerically, we will primarily focus on the two-dimensional case; our main interest is the representation of waves related to the wave equation. Sparse representations are useful, in some cases essential, for large-scale problem...
متن کاملRepresentation of Fourier Integral Operators using Shearlets
Traditional methods of time-frequency and multiscale analysis, such as wavelets and Gabor frames, have been successfully employed for representing most classes of pseudodifferential operators. However these methods are not equally effective in dealing with Fourier Integral Operators in general. In this paper, we show that the shearlets, recently introduced by the authors and their collaborators...
متن کامل